4 research outputs found

    Landslide Susceptibility Assessment of a Part of the Western Ghats (India) Employing the AHP and F-AHP Models and Comparison with Existing Susceptibility Maps

    Get PDF
    Landslides are prevalent in the Western Ghats, and the incidences that happened in 2021 in the Koottickal area of the Kottayam district (Western Ghats) resulted in the loss of 10 lives. The objectives of this study are to assess the landslide susceptibility of the high-range local self-governments (LSGs) in the Kottayam district using the analytical hierarchy process (AHP) and fuzzy-AHP (F-AHP) models and to compare the performance of existing landslide susceptible maps. This area never witnessed any massive landslides of this dimension, which warrants the necessity of relooking into the existing landslide-susceptible models. For AHP and F-AHP modeling, ten conditioning factors were selected: slope, soil texture, land use/land cover (LULC), geomorphology, road buffer, lithology, and satellite image-derived indices such as the normalized difference road landslide index (NDRLI), the normalized difference water index (NDWI), the normalized burn ratio (NBR), and the soil-adjusted vegetation index (SAVI). The landslide-susceptible zones were categorized into three: low, moderate, and high. The validation of the maps created using the receiver operating characteristic (ROC) technique ascertained the performances of the AHP, F-AHP, and TISSA maps as excellent, with an area under the ROC curve (AUC) value above 0.80, and the NCESS map as acceptable, with an AUC value above 0.70. Though the difference is negligible, the map prepared using the TISSA model has better performance (AUC = 0.889) than the F-AHP (AUC = 0.872), AHP (AUC = 0.867), and NCESS (AUC = 0.789) models. The validation of maps employing other matrices such as accuracy, mean absolute error (MAE), and root mean square error (RMSE) also confirmed that the TISSA model (0.869, 0.226, and 0.122, respectively) has better performance, followed by the F-AHP (0.856, 0.243, and 0.147, respectively), AHP (0.855, 0.249, and 0.159, respectively), and NCESS (0.770, 0.309, and 0.177, respectively) models. The most landslide-inducing factors in this area that were identified through this study are slope, soil texture, LULC, geomorphology, and NDRLI. Koottickal, Poonjar-Thekkekara, Moonnilavu, Thalanad, and Koruthodu are the LSGs that are highly susceptible to landslides. The identification of landslide-susceptible areas using diversified techniques will aid decision-makers in identifying critical infrastructure at risk and alternate routes for emergency evacuation of people to safer terrain during an exigency

    Monitoring and Mapping of Shallow Landslides in a Tropical Environment Using Persistent Scatterer Interferometry: A Case Study from the Western Ghats, India

    No full text
    Persistent Scatterer Interferometry (PSI) techniques are now well established and accepted for monitoring ground displacements. The presence of shallow-seated landslides, ubiquitous phenomena in the tropics, offers an opportunity to monitor and map these hazards using PSI at the regional scale. Thus, the Western Ghats of India, experiencing a tropical climate and in a topographically complex region of the world, provides an ideal study site to test the efficacy of landslide detection with PSI. The biggest challenge in using the PSI technique in tropical regions is the additional noise in data due to vegetation. In this study, we filtered these noises by utilizing the 95-percentile of the highest coherence data, which also reduced the redundancy of the PSI points. The study examined 12 landslides that occurred within one of the three temporal categories grouped as Group 1, Group 2, and Group 3, categorized in relation to PSI monitoring periods, which was also further classified into east- and west-facing landslides. The Synthetic Aperture Radar (SAR) data is in descending mode, and, therefore, the east-facing landslides are characterized by positive deformation velocity values, whereas the west-facing landslides have negative deformation values. Further, the landslide-prone areas, delineated using the conventional factor of safety (FS), were refined and mapped using PSI velocity values. The combination of PSI with the conventional FS approach helped to identify exclusive zones prone to landslides. The main aim of such an attempt is to identify critical areas in the unstable category in the map prepared using FS and prioritizing the mitigation measures, and to develop a road map for any developmental activities. The approach also helps to increase confidence in the susceptibility mapping and reduce false alarms

    Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models

    No full text
    Wildfires are one of the gravest and most momentous hazards affecting rich forest biomes worldwide; India is one of the hotspots due to its diverse forest types and human-induced reasons. This research aims to identify wildfire risk zones in two contrasting climate zones, the Wayanad Wildlife Sanctuary in the Western Ghats and the Kedarnath Wildlife Sanctuary in the Himalayas, using geospatial tools, analytical hierarchy process (AHP), and fuzzy-AHP models to assess the impacts of various conditioning factors and compare the efficacy of the two models. Both of the wildlife sanctuaries were severely battered by fires in the past, with more than 100 fire incidences considered for this modeling. This analysis found that both natural and anthropogenic factors are responsible for the fire occurrences in both of the two sanctuaries. The validation of the risk maps, utilizing the receiver operating characteristic (ROC) method, proved that both models have outstanding prediction accuracy for the training and validation datasets, with the F-AHP model having a slight edge over the other model. The results of other statistical validation matrices such as sensitivity, accuracy, and Kappa index also confirmed that F-AHP is better than the AHP model. According to the F-AHP model, about 22.49% of Kedarnath and 17.12% of Wayanad fall within the very-high risk zones. The created models will serve as a tool for implementing effective policies intended to reduce the impact of fires, even in other protected areas with similar forest types, terrain, and climatic conditions

    Wildfire Risk Zone Mapping in Contrasting Climatic Conditions: An Approach Employing AHP and F-AHP Models

    Get PDF
    Wildfires are one of the gravest and most momentous hazards affecting rich forest biomes worldwide; India is one of the hotspots due to its diverse forest types and human-induced reasons. This research aims to identify wildfire risk zones in two contrasting climate zones, the Wayanad Wildlife Sanctuary in the Western Ghats and the Kedarnath Wildlife Sanctuary in the Himalayas, using geospatial tools, analytical hierarchy process (AHP), and fuzzy-AHP models to assess the impacts of various conditioning factors and compare the efficacy of the two models. Both of the wildlife sanctuaries were severely battered by fires in the past, with more than 100 fire incidences considered for this modeling. This analysis found that both natural and anthropogenic factors are responsible for the fire occurrences in both of the two sanctuaries. The validation of the risk maps, utilizing the receiver operating characteristic (ROC) method, proved that both models have outstanding prediction accuracy for the training and validation datasets, with the F-AHP model having a slight edge over the other model. The results of other statistical validation matrices such as sensitivity, accuracy, and Kappa index also confirmed that F-AHP is better than the AHP model. According to the F-AHP model, about 22.49% of Kedarnath and 17.12% of Wayanad fall within the very-high risk zones. The created models will serve as a tool for implementing effective policies intended to reduce the impact of fires, even in other protected areas with similar forest types, terrain, and climatic conditions
    corecore